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The Two-Dimensional One-Component Plasma in a 
Doubly Periodic Background: Exact Results 
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We revisit the equilibrium classical statistical mechanics of the two-dimensional 
one-component plasma, for the special value F = 2  of the coupling constant. 
Using a new method, we find that the model is solvable (the n-body densities 
can be explicitly computed) for a larger class of inhomogeneous backgrounds. 
In particular, we can deal with a doubly periodic background; this is a classical 
model for a crystal made of fixed ions and mobile electrons. At F = 2 ,  this 
system is conducting: the correlations have a fast decay, and the Stillinger- 
Lovett screening sum rule is obeyed. 

KEY WORDS: One-component inhomogeneous plasma; doubly periodic 
background; conducting phase. 

1. I N T R O D U C T I O N  

In statistical mechanics, it is obviously of interest to have exactly solvable 
models for Coulomb systems (plasmas, electrolytes, metals, etc.). The sim- 
plest model of a Coulomb system is the one-component plasma (jellium): 
identical charged particles move in a rigid charged background, which 
ensures overall neutrality. In two dimensions, the Coulomb potential 
between two particles of charge e at a distance r from one another is 
- e  2 l n ( r / L ) ,  where L is an arbitrary length scale, and the dimensionless 
coupling constant is F =  fie 2, where fl is the inverse temperature; for the 
special value F = 2 ,  it has been previously found that the equilibrium 
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classical statistical mechanics of the two-dimensional one-component 
plasma can be worked out exactly for several kinds of background charge 
distributions: one is able to obtain the n-particle densities. Besides the 
simplest case of a uniform background, (m) essentially one could deal with a 
background charge density depending on one space coordinate(3); this 
covers a variety of charged interfaces (electrical double layers) of interest to 
electrochemists. 

This previous work left unsolved the important case of a doubly 
periodic background. In the present paper, we solve this case, using a more 
general new method; a preliminary account has been given elsewhere by 
two of us. (4) Thus, we have an explicit solution for a model which can be 
understood as made of mobile (classical) "electrons" interacting between 
themselves and with a lattice of extended fixed "ions"; this one-component 
plasma in a periodic background can also be regarded as a two-component 
plasma in which the particles of one species have been fixed on a lattice. 
Like the symmetric two-component plasma, the present model is expected 
to undergo a Kosterlitz-Thouless phase transition between a low-tem- 
perature dielectric phase and a high-temperature conducting phase, and 
this transition is actually seen in computer simulations. (5"6) Here, we show 
that, in our system, criteria that characterize a conductor are satisfied: the 
correlations have a fast decay at large separations, and the Stillinger- 
Lovett sum rule (7) is obeyed. According to these criteria, at F = 2 ,  the 
system is in its conducting phase 

The paper is organized as follows. In Section 2, the general method is 
reviewed. In Section 3, it is shown that this method provides a simpler 
approach to the known case where the background density is 
inhomogeneous in one direction only. The doubly periodic background is 
discussed in Section 4: we compute the n-particle densities and discuss sum 
rules. 

2. M E T H O D  

2.1. n - P a r t i c l e  Dens i t ies  

We start with N particles of charge - e  in some background. The 
position of the ith particle is r i = (x~, y~); we also use the complex number 
zi = x~ + iyi. The Hamiltonian is 

N 

H = e  2 ~ V(ri)--e 2 ~ l n ( l z i - z j [ / L )  (2.1) 
i = 1  l<~i<j<~N 
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where e 2 V  is the background particle interaction, and therefore, for an 
inverse temperature/3 such that F= /3e2=  2, the Boltzmann factor is 

e x p ( - / 3 H ) = C I d e t { e x p [ - V ( r i ) ] z j - 1 } i , j _ l ,  .u l  2 (2.2) 

where C is a constant. 
In the simple case of a background potential of circular symmetry, 

V(r) = V(r),  the functions e x p [ -  V ( r ) ] z  s 1 are mutually orthogonal, and 
(2.2) has the same form as some squared wave function of a system of 
independent fermions; the determinant in (2.2) is just a Slater determinant, 
and to compute the n-body densities is a standard problem. All the 
previously solved cases could be obtained by starting with a circular 
geometry and taking a suitable limit. 

In the present paper, we want to consider more general forms of the 
background potential, and the functions e x p [ - V ( r ) ] z  j 1 are not 
necessarily mutually orthogonal. However, we can choose an orthogonal 
basis ~j(r) for the space of these functions, and rewrite (2.2) as 

exp(- /3H) = Cldet{ %(ri)}i,j= ~,_., ul 2 (2.3) 

since the new determinant is proportional to the former one. It is then easy 
to show that the n-particle truncated densities can be expressed in terms of 
the projector 

kCtj(r 1 ) ~*(r2) 
< r ~ l P J r 2 > : ~  ~dr I%(r)] 2 (2.4) 

a s  

p ( r ) :  <r lPlr> 

p~2)(rl, r2) = -,I ( r l  I Pl r2)l 2 

p~n'(r~, r2,..., rn) = ( - ) n + l  
( i l i2 ' ' ' in)  

(r~ I P[ r~)--. (r~ I PI r~) 

(2.5) 

where the summation runs over all cycles (i I i2.. .  in) built with { 1, 2,..., n}. 
In the thermodynamic limit, the functions e x p [ - V ( r ) ] z  j-1 span the sub- 
space of Hilbert space defined by the entire functions of z = x + iy times 
e x p [ - V ( r ) ] ,  and P becomes the projector on that subspace (of course, 
this is an intrinsic definition of P, independent of the choice of the 
orthogonal basis Us). Thus, the problem of obtaining the n-particle 
densities is reduced to computing the projector P. 

In the simplest case of a uniform background density P0, the 
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background potential V(r) can be chosen as 17Cpo r2 (plus some irrelevant 
constant), % = e x p ( -  V)z j -  1, and 

( r l  IPI r2 ) = po exp[ - �89 [2 + iz212 _ 2z~z*)] 

p(r) = Po (2.6) 

p~)(rl, r2) = _p2 e x p ( -  ~Po Irl - r2l 2) 

In the general case, the background density p~(r) can be considered as 
being the sum of a uniform contribution P0 plus a nonuniform modulation 
~(r). Correspondingly, the background potential V(r) can be chosen of the 
form Vo(r)+ ~b(r), where Vo(r)= �89 r2 and 3~b(r)= 2~( r ) .  As a first step 
toward the computation of the projector P on the space of the functions 
e x p [ - ~ b ( r ) -  Vo(r)]z j, j e  ~, it will turn out to be convenient to replace 
the z ~ by another basis for the entire functions 

~0k(z) = exp{ - �89 (k/gpo)]2}, ke 

The ~0k are indeed such a basis, since 

z n = ~  1/22-" d t g n ( O e x p [ - ( z - t )  2] (2.7) 
oO 

where the Hn(t) are Hermite polynomials, and (2.7) becomes a super- 
position of ~0 k functions through a rescaling of z and t. The basis 
e x p [ -  Vo(r)] z ~ is then replaced by 

e x p [ -  Vo(r)] ~ok(z)= e x p ( -  i~poxy) exp(-k2/4~po) 

x exp{ - ~ p o [ x -  (k/Zgpo)] 2 + iky} (2.8) 

Actually, since (2.8) will be used for defining the projector P and thereafter 
computing the densities (2.5), we can omit in (2.8) the normalization factor 
exp(-k2/4~po) (this leaves the projector unchanged) and the phase factor 
exp(-i~poxy) (this leaves the densities unchanged because of their cyclic 
structure). 

Therefore, an alternative definition of P is to take it as the projector 
on the space of the functions 

For the potentials q~(r) that will be considered here, strictly speaking 
the functions (2.9) do not belong to Hilbert space, because lexp(iky)l does 
not decrease at infinity. However, these functions do form a basis in the 
sense of distributions, just like the plane waves in quantum mechanics. 
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2.2. Arbitrariness in the Choice of V(r) 

Let us remark that the background potential V(r) is not uniquely 
determined by the background density pB(r). In the thermodynamic limit, 
V(r) keeps a memory of the boundary conditions even after these boun- 
daries have receded to infinity. The n-particle densities, however, should 
depend only on pc(r) for a system with screening properties that prevent 
the bulk from being affected by infinitely remote charged boundaries. It is 
satisfactory to check explicitly this independence upon the choice of V(r), 
to which it should be always possible to add an arbitrary harmonic 
function. Actually, since the confinement of the particles must be preserved, 
the total background potential must increase fast enough at infinity, and 
we shall only consider the addition to V(r) of a harmonic function of the 
form 

f ( r )  = a2(x 2 - y2) + b2xy + a lx  + bl y + c 

with coefficients a2 and b2 of sufficiently small absolute value; furthermore, 
the term bzxy c a n  be removed by a rotation of the axes. The potential f ( r )  
can be interpreted as determined by suitable external electrodes. 

It is then easy to see that q~k(z) can be chosen again of the form 
e x p { - c ~ [ z -  (2c0-1(k + 7 + i6)]2}, where ~, 7, 6 are real constants, and by 
a suitable choice of these constants, f ( r )  can be cancelled, except for 
irrelevant normalization and phase factors. Therefore, the projector P can 
be left unchanged. 

Incidentally, the basis (2.9) can be directly obtained by choosing the 
potential contribution from the uniform background as Vo = rCpo x2 and 
taking exp(kz) as the basis for the entire functions. Such a V 0 will be 
obtained if we reach the infinite-system limit starting from a strip geometry 
rather than from a circular one. 

2.3. Magnetic Analogy 

The arbitrariness in the choice of our background potential V(r) has a 
quantum mechanical analog: a gauge transformation in a magnetic 
problem. Let us consider a particle of mass m and charge q moving in the 
xy plane and subjected to a uniform magnetic field B parallel to the z 
axis. (8) The ground state is infinitely degenerate. In the gauge where the 
vector potential is A = �89 x r, a basis for the ground-state wave functions 
is exp[--(qB/4)r  2] z j, j ~ N ;  in the gauge where the vector potential is 
A =jBx  (j is the unit vector along the y axis), a basis for the ground-state 
wave functions is exp{ - �89 (k/qB)] 2 + iky}, k e ~. Obviously, our 
change from the basis exp[- �89  j to the basis exp{ - rCpo[x -  
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(k/2rCpo)]2+ iky} is exactly of the same form. If a Slater determinant is 
built with the ground-state wave functions, the corresponding n-body 
densities must be gauge-independent, just as our n-body densities are 
independent of our choice of basis. 

3. BACKGROUND I N H O M O G E N E O U S  IN ONE DIRECTION 

We now revisit the case of a background density depending on one 
coordinate only(3): pB(x). The potential ~b can be chosen as ~b(x), and we 
have at hand the orthogonal basis: (2.9) is orthogonal because of the 
plane-wave factor exp(iky). Adapting (2.4) to the case of a continuous 
index k, we find 

i dk ( r l l P I r 2 )  = e x p [ - ~ b ( x l ) - ~ b ( x 2 ) ]  _~  2---~ 

exp[ik(y l  - Y2)] exp{ -~Zpo[(Xl - k/2~po) 2 + (x2 - k/2~po) 2] } (3.1) 
x ~_~ dx exp[- -2~b(x) - 2~Zpo(x - k/2~po) 2 ] 

Using (3.1) in (2.5), we retrieve at once the results of Ref. 3. 
Some special care must be exercised for dealing with the case where 

the particles are confined to the half-space x > 0 by an impenetrable wall at 
x = 0 .  Then, in (3.1), the range of x must be restricted to x > 0 ,  and the 
range of k must be restricted to k > 0. This is shown as follows. Since we 
have already taken the limit of an infinite system, we shall start (3) with a 
system in which an impenetrable barrier occupying the region - l <  x < 0 
separates the plasma into two regions x < - l  and x > 0. The impenetrable 
wall system will be obtained by taking the limit l--, oo in such a way that 
the remote regions x > 0 and x < - l  no longer see each other. The values 
k < 0  are suppressed in (3.1) because the norm in the denominator  has a 
contribution from the remote region x < - l ,  which becomes infinite for 
k < 0 in the limit l ~ oe; on the contrary, this contribution vanishes for 
k > 0 in the limit l --* co. The independence of the regions x > 0 and x < - l  
is achieved by requiring that each of them should be globally neutral, 
which will be the case if the background potential is symmetrical with 
respect to the barrier: V(x)=npoX2+(~(x)  for x > 0 ,  V(x )=  +oe for 
- l <  x < O, V(x) = V ( - x -  l) for x < - l .  Then, remembering that ~b(x) is 
defined in every region as V ( x ) - n p o  x2, and changing - x - l  into x, we 
can rearrange the denominator  of (3.1) as 

oo k 2 
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In the limit l--* ~ ,  the first term of f ( k )  (which is the contribution from 
the region x < - l )  diverges if k < 0 ,  and vanishes if k > 0 .  As a con- 
sequence, (3.1) becomes (xl,  x2 > 0) 

fo ~ dk ( r l ] P ] r 2 ) = e x p [ - - ( 9 ( x l ) - - ( 9 ( x 2 ) ]  2re 

exp [ik( Y l  - -  Y2)] exp{ --~PoE(xl -- k/2npo) 2 + (x2 - k/2npo) 2 ] } 
x (3.3) 

S~ dx exp [ - 2~b(x) - 2~p0(x - k/2~po)2 ] 

(3.3) is in agreement with the results ~9) about a hard wall carrying a surface 
charge density ea, in which case ~b(x)= 2~ax, x > 0; ~b(x)= 0, x < 0. 

4. D O U B L Y  PERIODIC B A C K G R O U N D  

In this section, which is the core of the present paper, we study the 
case where the background density is doubly periodic. Thus, we consider a 
doubly periodic background potential modulation ~b(r): 

~b(r + na + mb) = ~b(r), n, mE7/  (4.1) 

The unit cell is a parallelogram built with the vectors a and b, of area 
ab sin Co, where ~p is the angle between a and b. The system is neutral, with 
a particle density Po equal to the average of the total background density 
P0 + (2~)-1 A~b(r). In order to mimic a simple crystal of extended fixed ions 
and mobile electrons of opposite charges, we take P0 = (ab sin ~o) 1, which 
means there is one particle per unit cell. 

4.1. n-Part ic les Densit ies 

Although the functions (2.9) now are not orthogonal, they are a good 
starting point for computing the projector P. Choosing the y axis along the 
period vector b, and defining ~ e [0, 1 ] and n integer by k = 2~(~ + n)/b, we 
can rewrite ~k as 

I + 

As a consequence of the periodicity of ~b along the y axis, 

f ~ dy ~ ,n , ( r )  ~c,n(r) oc 6 ( ~ - ~ ' )  (4.3) 
- - C t 3  

Furthermore, if the unit cell is a rectangle (Co = g/2), (pob) 1 = a and the 
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periodicity of ~b along the x axis ensures that ~r depends on x only 
through x-na; this suggests introducing the Bloch functions 

~ , , ( r )  = ~ exp( -2x iqn)  ~ , . ( r ) ,  ~, r/E [0, 1 ] 
n 

which do have the desired orthogonality property 

(4.4) 

The argument can be easily extended to the more general case where the 
unit cell is a parallelogram, by introducing (dimensionless) oblique coor- 
dinates (X, Y) defined by r = Xa + Yb. Multiplying ~ . .  by an irrelevant 
phase factor exp{ -izr(a/b) cos (o[X 2 + (( + n) 2 ] }, we obtain 

where 

~ur = exp[ -~b(r)] exp[ - (~/z)(X- ~ - n) 2 + 27ri(~ + n) Y] (4.6) 

17 l .  , where z = (b/a)exp[i(q)-~ )], with these ~u~, n functions, which have the 
same form as (4.2), we can proceed as above, in oblique coordinates in the 
general case. 

Thus, the ~ , ,  are orthogonal: 

f dr ~t~,,,,(r) ~tr = &(~ - ~') &0 / -  q') f(~, r/) (4.7) 

1 ~ exp(2uh/N) dXexp  U ( X - ~ ) 2 - ~ . ( X - ~ - N )  2 
f(~,r/)  Po u _~ T 

x d Y e x p [ -  2~b(X, Y)] exp ( -2n iNY)  (4.8) 

These orthogonal ~r can be used for building the projector (2.4), with the 
result 

; / f ~  1 ( r l  IPI r2) = e x p [ - ~ b ( r l ) -  ~b(r2)] d~ d ~ l ~ ~ e x p [ 2 1 r h 1 ( m - n ) ]  
n m  

x exp -- -z (XI -- ~ -- n) 2 - ~-g (X2 - ~ - m) 2 

+ 2zci[(~ + n) Y1 - (~ + m) Y2]} (4,9) 

fo~ clx ~. , , ( r )  ~ , , ( r )  oc &(~/- q') (4.5) 
o o  
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A more compact form can be obtained by using the Poisson identity 

~Nexp -- - ~ N  +2~izN = x / z *  2 e x p [ - ~ z * ( z - N ) 2 ]  (4.10) 
N 

in (4.8), and also in (4.9), where we set r n = n + N .  The result is 

f(~, r/)= 1 x / z ,  f - 2  dX f ~  dYexp[-2~b(X, Y)] 

x exp [ -  ~ - ( X - ~ ) 2 -  ~ * (  Y -  r/)2- 2~ i (X-~) (  (4.11) 

and 

( r l  lP]r2) =exp[-~b(r l ) -~b(r2)]  x/z* ~ d~ - ~ dr/ f(~, r/----~) 

x exp - - (J(~ - ~)2 _ rc~*( Y2 - r/)2 _ 2~zi(X2 - ~)( Y2 - ~) 
"C 

+ 2rci~(Yl - Y2)] (4.12) 

Thus, we have obtained an integral representation of the projector P; when 
used in (2.5) it gives the n-body densities. Some symmetries of (4.12) are 
hidden; for instance, ( r l  IPI r2 } = (r2 IPI rl}*. Others are apparent; for 
instance, the function f(~, r/) is doubly periodic with period 1, and this 
ensures that the densities have the same periodicity properties as the 
background. 

As an illustration, we consider the case of a square unit cell (a = b, 
~o = ~/2, z -- 1) with the simplest choice 

e x p [ -  2~b(r)] = 1 + 2(cos 2~X+ cos 2~Y), [21 ~ 1/2 (4.13) 

The total background density is 

pB(r) = Po + (2~) 1 Ar (4.14) 

and from (4.11) and (4.12), we find for the particle density 

p ( r )=  ( r ] P l r )  

= pox/2exp[--2r  d~ dr/ 
- - o o  - - o 9  

exp[ - r E ( X -  ~)2 _ re( Y -  r/)2] cos [ 2 ~ ( X -  ~)( Y -  r/)] 
x (4.15) 

1 + 2[exp( - rc/2)](cos 2 ~  + cos 2rot/) 
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The potential modulation ~b(X, Y), the background density pB(X, Y), and 
the particle density p(X, Y) are displayed in Fig. 1 for 2 = 0.49. With this 
choice of a large amplitude 2, the background density is a rather tormented 
landscape; the particle density tries to follow, but it does not quite succeed 
and it exhibits much smoother oscillations. 

Another representation of p(r) might be of interest. The normalization 
factor (4.8) can be written as 

=--  dX dYlOc~(X, Y)I 2 (4.16) f(r r/) P0 

and therefore 

1 f l  I@r Y)l 2 f p(X, r):~Ojo d~ ;o d~.ro, dx~.ro' dr, I ~,~<~, ~)l ~ (4.17) 

Y 

X 

a 

Fig. 1. A simple example. (a) The potential modulation ~b(r). (b) The background density 
pB(r)- (c) The particle density p(r). 
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Y 

X 

b 
? 

C 
Fig. 1 (continued) 
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If we restrict ourselves to the case of  a rectangular  unit cell, ~ is real, and 

I ~'~,~(X, Y)I 2 = exp [  - 2~b(X, Y)] ~ exp I - _n ( X -  ~ - n) 2 
mn [ "C 

- n  ( X - ~ - r n ) 2  + (4.18) 

The  sum on n and m can be replaced by a sum on/~ = m - n and  v = m + n, 
with # and v of the same parity.  The  contr ibut ions  f rom (#, v) even and 
(#, v) odd, respectively, can be expressed in terms of Jacobi  theta  functions. 
The  result is 

~t~,,(X, Y)t2 : e x p [ - 2 ~ b ( X ,  Y ) ] ( 2 ) 1 / 2 [ O 3 ( 2 q - 2 Y , ! ) O 3 ( X - ~ , 2 )  

where the 0 functions are defined by 

0 3 ( X '  [ )  = Z exp( --rctn 2 + 2rrinx) 
n 

= t -1/2 ~ exp[  - (~ / t ) ( x  - n) 2 ] 
n 

02(x, t) = ~ exp [  - r c t (n  + �89 + 2~i(n + �89 
, (4.20) 

= t 1/2 ~ ( - 1 ) "  exp [  - (rc/t)(x - n) 2 ] 
n 

04(x, t) = ~ exp [  - r~ tn  2 + 2~/n(x + �89 
n 

= t 1/2 ~ exp[- - (~ / t ) ( x  - n - �89 
n 

The particle density is obta ined  by substi tut ing (4.19) into (4.17). 

4.2. Decay  of  the  Corre la t ions  

The decay of the t runcated  densities (2.5) at large separat ions  is faster 
than  any inverse power  law. This can be seen as follows. The  decay of the 
densities is governed by the decay of P: we can s tudy this behavior  f rom 
(4.12) writ ten in the form 
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( r l  tPl r2) = exp[-~b(r l )  - ~b(r2) ] exp[2rtiX1( Y1 - I12)] 

f ~  foo d r / f (~+  1 
• , j r*  < x,,  r/+ 

[ r c  :2 rrr,r/2 2rci~r/+2~ic(Y*- Y2)-2rtir/(X,-X2) 1 x exp - -~ 

(4.21) 

Let us study the behavior of (4.21), for a fixed value of r~, as r 2 recedes to 
infinity. Since f is periodic in r/+ Y2, we can define Y2 by Y2 = Y2 + n,  

Y2 e [0, 1 ], n integer, and replace I12 by Y2 in f If we restrict ourselves to 
a fixed value for Y2, i.e., if r2 recedes to infinity by integral steps in Y2, the 
integral in (4.21) is the Fourier transform of a well-behaved function of 
and r/, and it decays faster than any inverse power law. 

The resulting fast decay of the correlations is one of the criteria that is 
believed to characterize a conducting phase. 

4.3. Sum Rules 

The one- and two-particle densities can be shown to obey several sum 
rules, which characterize a conductor. 

Neutrality. The averages, on a unit cell, of the particle density and of 
the background density are equal: 

f~ dX;~ dYp(X, Y)=Po  (4.22) 

This sum rule is satisfied by (4.17). 

Screening o[ a Particle o[ the System. This screening rule means 
that a particle of the system induces a polarization cloud of exactly 
opposite charge: 

f dr2 p ~ ( r l ,  r2) = --p(rl) (4.23) 

The structure of (2.5) ensures that this rule is obeyed, because of the 
closure property 

dr2 ( r l I P I r z ) ( r 2 [ P l r l )  = ( r l l P I r l )  (4.24) 

The rule can also be checked explicitly on the representation (4.9), after 
some algebra. 
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Screening of an Infinitesimal Test Charge (Stillinger-Lovett 
Rule). This screening rule means that an external infinitesimal test charge 
induces in the system a polarization cloud of exactly opposite charge. 
Through linear response theory, this statement becomes a sum rule for the 
truncated two-body density, the Carnie and Chan generalization (1~ of the 
Stillinger-Lovett rule (7) to an inhomogeneous system, written here for two 
dimensions: 

--fl f dr, f dr21nr2S(rl ,r2)= 1 (4.25) 

where S is the total charge structure factor 

S(r, ,  r2) = e2[p~)(rl,  r2) + p(rl) 6(r2 - r , ) ]  (4.26) 

In the present case of a periodic system, (4.25) can be written in other 
forms. Because of its periodicity properties, S(r~,r2) is completely 
described by its double Fourier transform 

1 
S G ( k ) = A  f v d r l  f dr2 e x p [ i G . r ,  + i k .  ( r 2 - r ~ ) ]  S(r, ,  r2) (4.27) 

where U means that the integration domain of r, is the unit cell, of area 
A = ab sin cp; G is a vector of the reciprocal lattice. From (4.23), one finds 
S , ( G )  = 0. Then, (4.25) can be reexpressed in terms of SG(k) and of the 
Fourier transform 2folk 2 of - l n  r as 

,~o(k) 
2nil k~olim k2 - -  1 (4.28) 

In other words 

_f ; 1 dr1 dr2 exp[ ik .  ( r 2 - r l ) ]  S(rl, r2) ~ (4.29) 
A u k-~o 2~fl 

Expanding the exponential in (4.29), we find the generalization to a 
periodic system of the Stillinger-Lovett second moment rule 

1 6~ (4.30) flz dr1 f dr2 (r2 - - r l ) a ( r 2 -  rl)7 p(T2)(r2-- r l )  - -  7zfle 2 

where e, ? = 1, 2 are the Cartesian components of r. Equations (4.29) and 
(4.30) are of the same form as in a homogeneous system, except for the 
average on rl, which is taken over the unit cell. 



Two-Dimensional One-Component Plasma 1235 

In terms of the 
(4.30) becomes 

Iv= fo 

Ixy-'~f~ dXlf~ 

_ p~ cos (p 

2re sin (p 

dimensionless oblique coordinates X, Y, when fie 2= 2, 

d Y  1 dX2 dY2 (X2 - J(l) 2 p(T2)(rl, r2) 
-oo oo 

2za sin (p 

d X1 fo dgl f--2 d~2 f--~oO 

pga 
2rob sin ~o 

d Y1 dX2 -oo 0:3 

(4.31a) 

dY2 ( Y 2 -  Y1) 2 fl(r2)(rl, r2) 

(4.31b) 

dY2 (X2-- J(1)(Y2-- Yl)P(r2)(rl, r2) 

(4.31c) 

In Appendix A, we show that these sum rules (4.31) are indeed obeyed. For 
this purpose, it is convenient to express p~} in terms of the projector P in 
its form (4.9), which explicitly exhibits the periodicity properties. 

The above-mentioned proof applies to any periodic background, 
including the special case of a lattice of fixed charges of negligible size. For 
this limiting case, however, we can also give an alternative proof, which is 
described in Appendix B. 

4.4. I rrat ional  Values of  the Number  of Particles per Cell 

Up to this point, we have assumed the value 1 for poA, the average 
number of mobile particles per unit cell. If poA=p/q (p, q integers), 
choosing a unit cell q times larger reduces the problem to poA = p, and it is 
easy to see that this case is solved by diagonalizing a p x p matrix. 

What about irrational values of poA? In terms of a model of a crystal, 
it would be a rather academic situation, since -po A is the ratio between 
the charge of an ion and the charge of an electron. Nevertheless, this is a 
mathematically interesting situation. Furthermore, our problem is closely 
related to a magnetic analog (11} of importance for the theory of the 
quantum Hall effect ~ and also to problems that arise in the theories of 
incommensurate structures/TM 

We have not been able to compute the densities for irrational values of 
poA. We only want to point out that, in the simplest case, the problem 
reduces to studying the solutions of an almost-Mathieu equation. 

822/50/5-6-25 
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We start again with the functions (4.2), for a square unit cell of side a, 
and a potential modulation of the form (4.13): 

~r = [1 + 2(cos 2rtX+ cos 2gY)]  1/2 

x e x p [ - r c k t ( X - ~ - ~ ) 2 + 2 ~ i ( ~ + n ) Y l  (4.32) 

where # = p o  A = po a2. Computing the projector P on the space of these 
functions amounts to diagonalizing the matrix formed by the scalar 
products 

f dr ~ , , ( r )  ~C,,m(r) = 6(~ - ~') A,m (4.33) 

A simple calculation gives 

1 2 +1)} (4.34) + ~ 2 e  ~/~(6n,m l+6n,m 

The problem of diagonalizing A nm leads to 

-~(Un+l +Un 1)+ Un=SU~ (4.35) 

If # =  1, the solution is un=exp( -2~ i t ln ) ,  and we retrieve (4.4). If # is 
irrational, (4.35) is the almost-Mathieu equation in its full glory, and we 
leave the computation of the projector P as an open problem. 

5. C O N C L U S I O N  

At F =  2, we have obtained an exact solution for the equilibrium 
statistical mechanics of the model of fixed ions and mobile electrons 
introduced by Hansen et aL (5"6) We have shown that, at F =  2, the model 
exhibits the features of a conducting phase: the correlations at large 
separations decay faster than any inverse power law, and the system has 
good screening properties (the StilIinger-Lovett rule is obeyed). Our results 
are also valid when the potential modulation ~b is a nonelectrostatic 
periodic potential. Furthermore, ~b may have arbitrarily large oscillations. 

On the basis of computer simulation results, it has been claimed by 
Hansen and his collaborators that the conductor~lielectric phase transition 
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occurs at a coupling F that is larger than 2 for finite-size ions and goes to 2 
as the ion radius goes to zero. Our exact results at F =  2 do not contradict 
this claim. 

A P P E N D I X A .  S T I L L I N G E R - L O V E T T S U M  RULE 

We check the sum rules (4.31), where 

p~)(rl, r2) = - ( r l  IPI r2)(r2 IPI rl ) (A.1) 

using for (r  I IPI r2) the representation (4.9). 
We first consider 

I y = - f ~ d X l f ~  dY1 exp[-2~b(rl)]  

x ~ d~ d~/ d~' d~/' [f(~, ~/)f(~', q')] 1 
nm 
n'm' 

x exp { - 2zci [q(n  -- m ) - t l '(n'  - m ' )  ] 

_ rcr (X1 - ~ - n)2 - - ~  (X1 - ~' - # ) 2  + 2~i(n - n ')  Y1 

x dX2exp - - ~ ( X 2 - ~ - m ) 2 - ~ - ( X 2 - ~ ' - m ' )  2 
--oo T 

x dY2 ( Y 2 -  Y1)2exp[ -2r  2~i(~-~')(Y2 - Y~) 
--oo 

- 2 r a ( m - m ' )  Y2] (A.2) 

Using the periodicity of ~b, we find for the integral over Y2 in (A.2) 

1 9 2 t 

(2g)2 (~2 6(~ --  ~') ~ (~m',m+ M fO dY2 exp[ - 2 q i ( r 2 )  + 2niMY2] 
M 

In (A.2), we can replace m' by m + M  and n' by n + N .  Using the 
periodicity of ~b, we can replace )(2 - m by Xz and perform the sum over m, 
which gives a 6 0 / -  t/'); we can also replace X 1 - n  by X1 and Y~, ~o ~ dX1... 
by ~oo dX1 .... We obtain 
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:,:= :o :o ". ,7) 

x - -  ~ exp(2~hlN) 
P 0  N --oo 

1 
X - -  

P0 

~72 { 1 

dX 1 exp - ~ (X~ - ( - N) 2 

dY 1 exp [ - 2r I ) - 27ziNY1 ] 

[ 1 ~ exp( - 2~irlM ) dX2 exp ~ (X 2 - ~ - M)  2 
M --oo 37 

dY2 exp[  - 2r + 2rciMY2] 

exp - -z (XI - ~)2 - ) - 7  (X2 - ~)2 (A.3) 

In (A.3), as a function of X~ the derivative (02/0~2) .-. is a combinat ion  of 
terms of the form exp[  - (Tz/37)(X1 - ~)z] or (X1 - ~) exp[  - (Tr/37)(fl - ~)2] 
or ( X 1 -  ~)2 e x p [ - ( ~ / z ) ( X 1 -  ~)2]. These terms enter the integral over X1 
and generate 

p---~ ~N exp(2~cir/N)f_~ dYf-1 exp - zt37 (XI __~)2 ~_~ ()iel __~__ N)2 

;o x dYl exp[  - 2~b(rl) - 2rciNYl] 

multiplied on the right by 1 or X 1 -  ~ or (X 1 -~)2  i.e., either f (~ ,  r/) as 
given by (4.8), or combinat ions  of Of/O~, Of/~l, and ~2f/~ Oq. The same 
identifications can be made  with exp[- (rc / z*) (X2-~)  2] and its 
derivatives. The result of these identifications is 

I t -  
( 2 g )  2 ~ - { - - ~  (Z + Z*)2 f Oq 

2 i ( z * - z )  l Of]} (A.4) 

Since f is periodic in ( and t/ with periods 1, the contr ibut ion from the 
derivative (d/0r /)---vanishes,  and we obtain (4.31b). 

The computa t ion  of Ixr  follows the same lines. Instead of (A3), we 
obtain 
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ip~ I ~ 1 
IxY=~ fo d~ fo @ f(~,,) 

x - -  ~ exp(2r@N) dX 1 exp - 77 (Xt - ~ - N) 2 
P 0  N --co 

f~ dYl e x p [ - 2 r  - 2~iNY1] x 

x - -  ~ exp(-2rt i t lM) dX2 exp - - (X2 - ~ - M) 2 
P o  - o o  "r 

f~ dY2 exp[ -- 2r + 2~ziMY2] x 

1 1 7c rc 
X (X2--  XI -- - -  ~ )  ~ { f ( - 7 ~  ~) exp I -- - (X1 -- ~)2 -- Y (X2-- ~)21} 2~i z 

(a.5) 

Again, we manage to recognize derivatives of f(~, q), with the result 
(4.31c). 

Exchanging the Jf and Y axes in (4.31b) proves (4.31a). 

APPENDIX  B. LATTICE OF POINT PARTICLES 

We take as the periodic background a lattice of fixed charged particles 
and consider the limiting case of point particles. We give a direct proof that 
the Stillinger-Lovett rule is obeyed. 

Let zi = xi + iyi be the complex number that defines the position of the 
ith mobile particle; similarly, let Zj define the position of the j t h  fixed 
particle. At F =  2, the Boltzmann factor of a system of N mobile and N 
fixed point particles is 

e x p ( - f l g )  = L 2N I-L<k (Zi-- Zk) I-Ij<l (Zy--  ZI) 2 
H,,j (z,- z;) 

det{ } ' = (B.1) 
i,j= l,...,N 

where the second form is obtained by using an algebraic identity of 
Cauchy. In order to avoid short-distance divergences, we introduce a cutoff 
at some small distance o, and replace (B.1) by 

e x p ( - - f l g ) = L  2N det {1 -expEClz , - -Zj l2/2a2]~ 2 
z i - - Z j  Ji, j=l,...,N (B.2) 
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The limit a + 0 will be taken at the end of the calculation. Equation (B.2) 
is again a squared determinant, and therefore the n-body truncated 
densities are again of the form (2.5), where now P is the projector on the 
space spanned by the functions ( z -  Z / ) - I [1  - e x p ( -  I z -  Z/12/2a2)]. An 
orthogonal basis for this space is obtained by constructing Bloch functions. 
Assuming for simplicity that the fixed particles are on the square lattice 
Z = m + in, m, n ~ 77, we define the Bloch functions 

g/~,,(x, y) = ~ exp[-2=i(~m + qn)] 
nan 

Using the Fourier transform 

1 - - e x p { -  [ ( x - m ) 2 +  ( y - - n ) 2 ] / 2 a  2 } 

I + f+ g({, rl) = dx dy exp [2zti({x + r/y)] 
--oo --o~3 

�9 exp[ - 2~2a2(~ z + q2)] 

+ in 

x + iy -- (m + in) 

(B.3) 

1 - exp[- - (x 2 + yZ)/2a2] 

x+iy 

(B.4) 

and the Poisson summation formula, we can rewrite ~u as 

~+,+(x, y ) =  - 

and we find for 

( r l l P l r 2 ) =  

exp{2gi[(~ + m ) x  + (rl + n) y ]  } g(~ + m, rl + n) 
nan 
the projector 

~r/+,r/(Xl, Y l )  I/J~,~7(X2, Y 2  2 

f l /2d~fl/2d~ 
1/2 --1/2 

(B.5) 

X (mt n~lm2n2 exp{ 2rri[ (~ + m l ) x l  + (q + ni)  Y ~ - (~ + m2)x2 

- -  ( r / +  n2) Y23 } g(~ + ml ,  rl + n,) g*(~ + m2, rl + nz)) 

]i 
• g(~ + m, q + n) g*(~ + m, q + n) (B.6) 

The structure of (B.6) allows us at once to check the average density 
sum rule f+2 ;; 

dx dy p ( r ) =  dx dy ( r l P I r )  = 1 (B.7) 
"~ -- 1/2 "J 1/2 2 2 
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and the neutrality sum rule 

dx2 dy2 p~)(rl, r2) 
co --oo 

= _ dx 2 dy2 ( r l l P l r 2 ) ( r 2 [ P l r l )  
--oo --co 

= - ( r l  IPI rl 5 = --P(rl) (B.8) 

We turn to the Stillinger-Lovett second moment 

, = 2 f O O d x z f ~ d y 2 f l / 2  ~1/2 , dxl dyl pT)(rl r 2 ) ( x i - x 2 )  2 
-- -- " - -  1/2 a 1/2 

O(3 ('1/2 
~,/2 dyl ( r l l P I r 2 ) ( r z [ P [ r l ) ( x l -  x2) 2 = -2f~o~ dx2 f  oody2j_l/2dx11/2 

Using the representation (B.6) of the projector, we perform the 
integrals with variables rl and r 2 -  rl;  we find 

where 

l ~ 1/2 _ fill/2 I-~.-~21/2d~fl/~/2d'1fl/~/2d ~' d'1' 
6" " f ( r162162  

x6"((-~") t'1-'1 )f-~, '1;~, '1)f(~,,~/,;~,, '1,) 

(B.9) 

space 

(B.lO) 

f(~,'1;~','1')=~g(~+m,'1+n)g*(~'+m,'1'+n) (B.11) 
mtt 

Replacing 6 " ( ~ -  ~') by 6 ( ~ -  ~')(~2/a~'2), we obtain 

1 ~ 1/2 f~/~/ [ 1 ~ 2 f ( f f , ' 1 ; f f ,  '1) 

I :  - 7 ~  --,/2 < 2 dn if(C, '1; r '1) c~r c~r 

af(#, ,1; ~', '1) af(r '1; ~', '1)] 
f2(~, '1; r '1) 

The function f(~, '1; if, '1) defined by (B.4) and (B.11) is 

f(~, '1; (, r/) = ~ exp{ - 47r2cr2[(~ + m) z + ('1 + n) 2] } 
m, (~ + m) 2 + ('1 + n) 2 

(B.12) 

(B.13) 
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It is convenient to display the singularity at ff = t / =  0, coming from the 
term m = n = 0, and to represent f ,  in the integration domain [ff[, It/[ < 1/2, 
by its Laurent expansion 

1 
f ( ( ,  t/; ~, t/) - ~2 - t -  t/2 ~- A + " (B.14) 

In the point-particle limit, a ~ 0, the sum in (B.13) diverges for large (m, n) 
and A becomes infinite; however, the terms of higher order in (~, t/) 
represented by dots in (B.14) remain finite and can be neglected. If a 
similar analysis is performed for the derivatives o f f  appearing in (B.12), it 
is easily seen that only the term m = n = 0 plays a role as a --* 0, because the 
sums on (m, n) that define these derivatives do no t  diverge for large (m, n); 
therefore 

~2/(~, n; r ~) _ ~g(~, ~) 2~ 1 
(B.15) 

and 

~f(~, ~; _~', ~) ef(~, n; ~', ~) g(~, t/) ~g~(L t/______~) 2 ~ 1 (B.16) 
o ;  

Using (B.14)-(B.16) in (B.12), we find 

1 f-1/2 f-1/2 A (B.17) 
,r~ ~ - 1 / 2  d ~  1/2 d~ [1+A(~2+~2)]  2 

As A goes to infinity, the integration domain in (B.17) can be extended to 
infinity and the integral evaluated in polar coordinates. Thus, 

lim I =  -1/n (B.18) 
o- ---~ 0 

This proves that the Stillinge~Lovett rules holds in the point-particle limit 
6--*0. 

We have not been able to compute I for a finite value of a. It should 
be remarked that the Boltzmann factor (B.2) corresponds, when a is non- 
zero, to a complicated many-body interaction, which would become the 
Coulomb law only if all particles were far apart from one another. There is 
no obvious reason for believing that such a system obeys or does not obey 
the Stillinger-Lovett rule. This is in contrast with the case of a bona fide 
system with extended fixed particles, which does obey the rule, as shown in 
Appendix A. 
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